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• RothC model predicted the influence of
future climate change scenarios in SOC
stock.

• Results showed an overall decrease in
SOC stocks by 2099 under climate
change scenarios.

• The extents of the decrease in SOC
stocks varied by different GCM models
and their RCPs.

• SOC stocks losses were more significant
in Acer velutinum plantation.
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Soil organic carbon (SOC) contains a considerable portion of the world's terrestrial carbon stock, and is affected
by changes in land cover and climate. SOCmodeling is a useful approach to assess the impact of land use, land use
change and climate change on carbon (C) sequestration. This study aimed to: (i) test the performance of RothC
model using data measured from different land covers in Hyrcanian forests (northern Iran); and (ii) predict
changes in SOC under different climate change scenarios that may occur in the future. The following land covers
were considered: Quercus castaneifolia (QC), Acer velutinum (AV), Alnus subcordata (AS), Cupressus sempervirens
(CS) plantations and a natural forest (NF). For assessment of future climate change projections the Fifth Assess-
ment IPCC report was used. These projections were generated with nine Global Climate Models (GCMs), for two
Representative Concentration Pathways (RCPs) leading to very low and high greenhouse gases concentration
levels (RCP 2.6 and RCP 8.5 respectively), and for four 20 year-periods up to 2099 (2030s, 2050s, 2070s and
2090s). Simulated values of SOC correlated well with measured data (R2 = 0.64 to 0.91) indicating a good effi-
ciency of the RothC model. Our results showed an overall decrease in SOC stocks by 2099 under all land covers
and climate change scenarios, but the extent of the decrease varied with the climate models, the emissions
scenarios, time periods and land covers. Acer velutinum plantationwas themost sensitive land cover to future cli-
mate change (range of decrease 8.34–21.83 t C ha−1). Results suggest thatmodeling techniques canbe effectively
applied for evaluating SOC stocks, allowing the identification of current patterns in the soil and the prediction of
future conditions.
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1. Introduction

An increasing trend of the air temperature and changes in the
weather conditions worldwide are denoted to as climate change. This
is a major environmental and socio-economical problem and in the ab-
sence of potential mitigation and adaptation processes, climate change
can affect many parts of the world, including environment, water re-
sources, and ecosystem services (Etemadi et al., 2012).

The combustion of fossil fuels and the changes in land use and man-
agement contribute to the emission of greenhouse gases (GHGs), espe-
cially carbon dioxide (CO2), globally increasing air temperature and
enhancing climate change (IPCC, 2014). In particular, in the period
1750–2011, Land Use and Land Use Change (LULUC) are estimated to
contribute with a carbon emission equal to 180 ± 80 Pg C (Ciais et al.,
2013).

Climate change can significantly affect soil carbon (C), since changes
in temperature, rainfall patterns and CO2 concentrations influence C in-
puts to soil, and soil C decomposition (Cao and Woodward, 1998;
Mosier, 1998). Recently climate change has been widely considered in
order to recognize its impact on global soil organic carbon (SOC) stocks
(Farzanmanesh et al., 2016; Lozano-García et al., 2017; Lu and Cheng,
2009; Smith et al., 2006; Xiong et al., 2014; Yigini and Panagos, 2016).
SOC is the largest terrestrial C pool after fossil fuels, and SOC sequestra-
tion via agricultural and forestry management is important to manage
and reduce greenhouse gas emissions (Jobbágy and Jackson, 2000;
Sinoga et al., 2012). Differentmanagement systems can alter SOC stocks,
mitigating or worsening climate change through C storage (sink) or C
emissions (source) (Gottschalk et al., 2012). Prediction of SOC stocks
in different ecosystem has become a key issue during the last few
years, because of the possible effects of C on future climate change. On
the other hand, understanding how land cover/land use and future
climate change can affect SOC stocks provides useful information to im-
prove land planning approaches (Lozano-García et al., 2017). However,
in climate change studies uncertainties are high so it is essential to in-
vestigate several scenarios (Paustian et al., 2016).

Due to the high costs of field experiments, simulation models are
widely used to estimate SOC stock changes in the long-term, and as de-
cision support tools under future predicted climatic conditions (Jones
and Donnelly, 2004; Mäkipää et al., 2008; Smith et al., 2006). Among
the many SOC simulation models available, the Rothamsted Carbon
Model (RothC) has a simpler structure than other models (Coleman
and Jenkinson, 1996; Jenkinson et al., 1990), and provides accurate sim-
ulations of themeasured values in different environments (Smith et al.,
1997). RothC model has been used in many countries and in various
ecosystems including prairie, agriculture and forest in the UK
(Coleman et al., 1997), forests in Austria (Palosuo et al., 2012), Australia
(Paul et al., 2003), Brazil (Cerri et al., 2007), Spain (Romanya et al.,
2000) and Zambia (Kaonga and Coleman, 2008); olive groves in Spain
(Nieto et al., 2010); land use and land use change in Italy (Farina et al.,
2017; Francaviglia et al., 2012); and arable crops in Australia (Senapati
et al., 2014), China (Guo et al., 2007; Li et al., 2016; Ludwig et al.,
2010), Germany (Ludwig et al., 2007) and Kenya (Kamoni et al., 2007).

The Hyrcanian forest (from “Hyrcania”, the Greek form of an old Ira-
nian word to describe the region of Gorgan) is located along the south-
ern coast of the Caspian Sea, has a total area of 1.85 million ha from the
sea level up to 2800 m, and includes 80 forest woody species (Fagus
orientalis Lipsky, Quercus castaneifolia C.A.M, Alnus subcordata C.A.M.,
Acer velutinum Boiss, Carpinus betulus L., Parrotia persica (DC) C.A.M.,
Ulmus glabraHuds, Pterocarya fraxinifolia (Lam.) Spach., Populus caspica
Bornm.). Besides wood production, the forest provides many important
ecosystem services including climate and water regulation, and oppor-
tunities for agriculture and tourism (Sagheb-Talebi et al., 2004).

According to the Kyoto Protocol afforestation has an important role
in the mitigation of atmospheric CO2. Forest plantations covered 184
million ha in year 2000 (116 million ha in Asia) (Nsabimana et al.,
2008). Recently 200,000 ha of degraded Hyrcanian forests have been
reforested with different species (Mohammadnezhad Kiasari, 2009)
which may have caused changes in SOC contents in the north of Iran.

Presently, RothC has been applied under different land covers and
climate change conditions in Iran (Farzanmanesh et al., 2016). Anyhow,
there are no simulation studies dealing with current SOC changes, land
cover change, and the effects of future climate conditions in the Middle
East region of Asia.

In the case of forest management, the replacement of the natural
vegetationwith newplantations affects the ability to provide ecosystem
services, and themaintenance of soil quality and SOC stocks.While their
exploitation provides mainly wood and timber to meet the needs of a
growing population, globalization and trade market, negative effects
on ecosystem services can derive from the lower protection from ero-
sion, the decrease of water regulation against floods and landslides,
the loss of plant biodiversity following the fragmentation of habitats,
the decrease of aesthetic and recreational components. Soil related ser-
vices are strictly linked to SOC contents and stocks, which affect soil
structure maintenance, soil moisture regime, organic matter decompo-
sition and the related nutrient cycling to support plant growth, green-
house gas emissions, and soil biota activity. In this line, the broad-
leafed and coniferous stands considered in the study as new plantations
are supposed to differ in quantity and quality of litter input to the soil
(Binkley and Giardina, 1998). The conversion from Hyrcanian forest to
other types of forest covers is widespread in Iran as a consequence of
the degradation of the natural forests, thus the study can be extrapolat-
ed to other forest areas with similar climatic conditions in the Middle-
East region.

Thus, we used RothCmodel in this study to understand the response
in terms of SOC stocks of the different land covers of Hyrcanian forest to
the climate changes, and provide assistance in the management strate-
gies in a long-term perspective.

Themain goals of this study were: (i) to test and validate RothC as a
technique for estimating SOC stocks in different land covers of Hyrcani-
an forest, north of Iran, and (ii) to evaluate the effects of climate change
scenarios on SOC stocks using RothC.

2. Materials and methods

2.1. Study area

Darab Kola forest (a part of the Hyrcanian forest), with an area of
2612 ha, is located in the southeastern of Sari City, Mazandaran prov-
ince, Iran (36°31′20″ N, 53°17′20″ E and 120–800 m a.s.l.) (Hosseini
and Jalilvand, 2007) (Fig. 1). The climate is temperate humid and
meanmonthly temperature vary from 26.1 °C in August to 7.5 °C in Feb-
ruary, 16.7 °C on average. Mean annual rainfall is 733 mm, with mini-
mum and maximum monthly values in July (28 mm) and November
(102 mm).

In 1987, some parts of this forest were “clear-cut”, and then
afforested by the Forests and Rangelands Organization of Iran (FROI)
in 1991. The dominant forest types, which were planted at a spacing
of 2 × 2 m, included cypress (Cupressus sempervirens var. horizontalis),
maple (Acer velutinum Bioss.), alder (Alnus subcordata C.A. Mey.), oak
(Quercus castaneifolia C.A. Mey.) and red pine (Pinus brutia Ten.).

The woody species in the natural forest are Persian iron wood
(Parrotia persica C. A. Meyer), European hornbeam (Carpinus betulus
L.), oak (Quercus castaneifolia C.A. Mey.), maple (Acer velutinum
Bioss.), and alder (Alnus subcordata C.A. Mey.). Herbaceous vegetation
in the natural forest includes cowslip (Primula veris L), johnson grass
(Sorghum halepense (L.) Pers.), nettle (Urtica dioica L.), and eagle fern
(Pteridium aquilinum (L.) Kuhn).

In this study, five different land covers were compared: maple plan-
tation (AV: with 15 ha area), alder plantation (AS: with 7 ha area), oak
plantation (QC:with 20ha area), cypress plantation (CS:with 4 ha area)
and a natural forest as native vegetation (NF). These plantations are a
sample of land cover change in the natural area of Hyrcanian forest,



Fig. 1. Location of the Darab Kola Forest, located in the central Caspian region of northern Iran. This site falls within the Hyrcanian forest zone.
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north of Iran, needing a comparative evaluation between planted and
natural forests. Thus, we compared a needle-leaved plantation and
three broad-leaved plantations with a natural forest, since the most of
new plantations in Hyrcanian forest have been donewith these species.

Soil sampleswere collected from the top 0–20 cm layer in November
2015 and 2016 before the onset of the rainy season. Thirty five soil
replicates (seven replicates for each land cover) were sampled using a
random method; each replicate was sampled at the four corners of a
square-shaped area of 25 m2, and then combined into a composite
sample. To decrease the border effects for each land cover, the outer
rows were not considered during sampling. In addition, SOC data of
2007 year was taken from Kooch et al. (2012) and Mohammadnezhad
Kiasari (2009).

Soil reaction was measured using an Orion Ionalyzer Model 901 pH
meter, total organic C and total N were measured by the Walkey and
Black and the Kjeldahl methods respectively (Kjeldahl, 1883; Walkley
and Black, 1934), bulk density was measured by the clod method
(Plaster, 1985) and soil texture was determined by the hydrometer
method (Day, 1965).

The soils are brown forest soils, classified as Cambisols according to
IUSS Working Group WRB (2015). Main soil characteristics are shown
in Table 1.

Soil organic C stocks were calculated with the formula:

SOC ¼ C %ð Þ � Bd� d ð1Þ
where SOC indicates the organic carbon stock (t C ha−1); C is the per-
centage of organic carbon content; Bd is the bulk density (g cm−3); d
is thickness (cm).

2.2. RothC model

RothC-26.3 (Coleman and Jenkinson, 1996) is a model to simulate
the turnover of organic C in non-waterlogged topsoils as affected by
soil type, temperature, moisture and plant cover. The data used in the
model are: monthly rainfall and open pan evaporation or potential
evapotranspiration (mm), monthly air temperature (°C), percentage
of clay, the ratio Decomposable Plant Material/Resistant Plant Material
of the incoming plant material to soil, monthly soil cover (whether
the soil is bare or vegetated), monthly input of plant residues
(t C ha−1), monthly input of FYM (t C ha−1) if any. In thismodel, soil or-
ganic C is split into four active compartments including Decomposable
PlantMaterial (DPM), Resistant PlantMaterial (RPM), HumifiedOrganic
matter (HUM), and Microbial Biomass BIO, and one small inert organic
matter (IOM) fraction (resistant to decomposition) (Jenkinson and
Coleman, 1994; Jenkinson et al., 1987, 1990, 1992). The model has
two types of simulations: “direct” that uses the known input of organic
C to the soil to determine the SOC stock, and “inverse”when the organic
matter input is unknown, that calculates the organic C input required to
keep the stock of SOC for a known combination of soil, DPM/RPM, land
management and weather data (Coleman and Jenkinson, 1996).



Table 1
Main soil physical and chemical properties in the different land covers (means ± standard deviation).

Land covera Organic carbon (%) Nitrogen (%) Bulk density (g cm−3) pH Sand (%) Silt (%) Clay (%)

Acer velutinum 2.3 ± 0.57 0.18 ± 0.07 1.33 ± 0.05 7.0 ± 0.68 26.0 ± 10.77 39.6 ± 11.08 34.4 ± 7.40
Alnus subcordata 2.6 ± 0.36 0.21 ± 0.12 1.37 ± 0.05 7.0 ± 0.33 25.2 ± 7.42 42.0 ± 14.0 32.8 ± 16.03
Quercus castaneifolia 2.4 ± 0.30 0.16 ± 0.01 1.32 ± 0.04 7.0 ± 0.95 22.4 ± 6.78 47.6 ± 6.22 30.0 ± 10.43
Cupressus sempervirens 3.2 ± 0.24 0.17 ± 0.01 1.24 ± 0.03 7.7 ± 0.24 21.2 ± 9.65 38.4 ± 3.28 40.4 ± 7.26
Natural forest 2.4 ± 0.29 0.17 ± 0.03 1.45 ± 0.05 7.5 ± 0.53 34.2 ± 7.69 42.8 ± 5.76 23.0 ± 15.49

a n = 7 in each land cover.
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2.3. Model parameterization and data inputs

Long-term (1984–2005) observed daily data of air temperature, pre-
cipitation, and open pan evaporation were taken from Gharakheill cli-
mate station of the Meteorological Organization of Iran (IRIMO), and
then the average of monthly temperature, rainfall, and open pan evap-
oration were calculated. IOM value (t C ha−1) was calculated using
the formula IOM = 0.049 × SOC1.139, where SOC is expressed in
t C ha−1 (Falloon et al., 1998). The DPM:RPM ratio in this study was
set to thedefault value of 0.25 forwoodlands in all plantations as report-
ed in Coleman and Jenkinson (1999).

To evaluate SOC stocks in different treatments, themodelmust be cal-
ibrated using a treatment with SOC at equilibrium, so the model baseline
was establishedwith the natural forest as the potential native vegetation.

Briefly, RothCwas run to equilibrium in inversemode for the natural
forest, and to fit the simulations to measured data, the model was run
under the mean weather and soil conditions of the natural forest for
10,000 years. The plant C input was adjusted iteratively until the
modeled values of SOC stock at equilibrium matched the measured
starting values. To achieve the SOC content of 69.68 t C ha−1 measured
in the natural forest, a C input to the soil of 3.85 t C ha−1 was required.
Clay (%) and IOM content were 23% and 6.16 t C ha−1 respectively.

To simulate SOC in the new forest plantations, and tomatch as close
as possible the SOC contents previously measured in 2007, 2015 and
2016, specific management files were created: the model was run
starting from the equilibrium conditions for the natural forest, and
then up to the sampling date in 2016 for the new plantations. Thereaf-
ter, the effects of future climate change described below were modeled
for four 20 year-periods on SOC stocks in the different plantations.
2.4. Climate change scenarios

Climate predictions used in the studywere derived from nine Global
Climate Models (GCMs) and two CO2 Representative Concentration
Pathways (RCPs) available from the IPCC Data Distribution Center site
(www.ipcc-data.org), used respectively in the Fifth Assessment IPCC re-
port (Plattner et al., 2009) and in the World Climate Research
Programme's Fifth Coupled Model Intercomparison Project (Taylor et
al., 2009).

A baseline and future climate conditions were investigated. The
baseline climate was derived from the daily data of the 1984–2005 pe-
riod, and the RCP 2.6 and RCP 8.5 future climate scenarios were built
from the predicted climatic parameters of the 2020–2099 period. In
this study we used nine Global Climate Models (GCMs) (Table 2). The
LARS-WG model was used for downscaling the nine GCMs output on
daily data of Gharakheill meteorological station. LARS-WG is a stochas-
tic weather generator based on the series weather generator (Racsko et
al., 1991) with an exhaustive explanation being given in Semenov et al.
(1998).

The RCP 2.6 is developed by the IMAGE modeling team (Integrated
Model to Assess the Global Environment), and leads to very low GHG
concentration levels. First its radiative forcing level reaches 3.1 W/m2

mid-century (“peak” scenario), and returns to 2.6 W/m2 by 2100 by re-
ducing GHG and pollutants emissions during the time (Van Vuuren et
al., 2007).
TheRCP 8.5 is developed by theMESSAGEmodeling team (Model for
Energy Supply Strategy Alternatives and their General Environmental
Impact) and the IIASA (Integrated Assessment Framework at the Inter-
national Institute for Applies Systems Analysis), Austria. In this scenario
GHG emissions increase over time, and leads to high GHG levels, based
on the A2r scenario (Riahi et al., 2007).

A schematic illustration of the experimental approach is shown in
Fig. 2.

The simulations were projected on four time periods with the nine
GCM models:

– 2030s: mean climate change for the period 2020–2039, with 428.50
(RCP 2.6) and 448.19 (RCP 8.5) CO2 concentrations (ppm);

– 2050s: mean climate change for the period 2040–2059, with 442.05
(RCP 2.6) and 539.66 (RCP 8.5) CO2 concentrations (ppm);

– 2070s: mean climate change for the period 2060–2079, with 437.46
(RCP 2.6) and 674.55 (RCP 8.5) CO2 concentrations (ppm);

– 2090s: mean climate change for the period 2080–2099, with 426.40
(RCP 2.6) and 841.19 (RCP 8.5) CO2 concentrations (ppm).

2.5. Statistical analyses

The predictive performance of the RothCmodel is reported in the re-
sults section using the relevant statistical indices R-squared (R2), Mean
Absolute Error (MAE) and Root Mean Square error (RMSE) as shown in
the following equations:

R2 ¼
∑n

i¼1 Si−O
� �

Oi−O
� �� �2

∑n
i¼1 Si−S

� �2
∑n

i¼1 Oi−O
� �2 ð2Þ

MAE ¼ ∑n
i¼1 oi−sij j

n
ð3Þ

RMSE ¼ 1
n
∑n

i¼1 Si−Oið Þ2
� �1=2

ð4Þ

where Si and Oi represent the ith predicted and observed values respec-
tively, S and O the average predicted and observed SOC values respec-
tively, and n the total number of observations.

3. Results

3.1. Climate change and emission scenarios

The CO2 concentrationwas 360 ppm in the baseline (1984–2005 pe-
riod) climate scenario, and an increase in CO2 concentration compared
with baseline was shown for the four time periods both in the RPC 2.6
and in the RPC 8.5.

Downscaled results of changes in temperature and precipitation for
four future time periods using LARS-WG method compared with the
baseline climate (1984–2005) are given in Figs. 3–6.

The results predict an increase in future temperature relative to the
baseline period (1984–2005)with all theGCMmodels, in both emission
scenarios, but the increase of temperaturewas higher in the RCP 8.5. For
example, in CNRM-CM5 model the mean temperature would increase

http://www.ipcc-data.org


Table 2
Overview of selected Global Climate Models (GCMs).

No. Model Spatial resolution (Longitude × Latitude) Institution

1 CNRM-CM5 1.41 × 1.4 Centre National de Recherches, France
2 EC-EARTH 1.125 × 1.122 EC-EARTH consortium
3 GISS-E2-H 2.5 × 2.0 NASA Goddard Institute for Space Studies
4 GISS-E2-R 2.5 × 2.0
5 MIROC-ESM 2.81 × 1.77 Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute

for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology6 MIROC-ESM-CHEM 2.81 × 1.77
7 MIR-CGCM3 1.125 × 1.125
8 MPI-ESM-LR 1.875 × 1.85 Max Planck Institute for Meteorology (MPI-M)
9 MPI-ESM-MR 1.875 × 1.85
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by 1.82, 2.37, 2.44 and 2.47 °C, respectively for 2030s, 2050s, 2070s and
2090s future periods in the RCP 2.6. Conversely, in the RCP 8.5, themean
temperature would increase by 1.43, 2.70, 4.03 and 5.59 °C respectively.

The projection on future rainfall patterns is very complex and uncer-
tain since precipitation involves local processes of larger complexity
than temperature, and projections are usually less robust than those
for temperature (Giorgi and Lionello, 2008). GCMmodels indicated dif-
ferent results for precipitation in the four time periods. In MIROC-ESM-
CHEM model the amount of precipitation would increase by 21.83%,
58.91%, 30.57% and 52.28%, respectively for 2030s, 2050s, 2070s and
2090s in theRCP 2.6.While inMPI-ESM-LRmodel the amount of precip-
itationwould decrease by 13.06%, 4.60%, 1.99% and 1.32% respectively in
the RCP 2.6.
3.2. Baseline carbon storage and modeling results

Running themodel in inversemode, RothC calculated the annual or-
ganic C inputs to soil needed to attain SOC stocks in the natural forest.
Modeled annual inputs in the different land covers ranged from 2.65
to 5.09 t C ha−1 year−1 (Table 3).

In this study, SOC stocks considerably differed across land covers.
The highest accumulation of SOC occurred under the Alnus subcordata
and the Cupressus sempervirens plantations (71.24 t C ha−1 and
79.42 t C ha−1 respectively) measured in 2016 following land cover
change from the natural forest (69.68 t C ha−1) to the new plantations.
However, SOC stocks were sharply lower in the Acer velutinum and the
Quercus castaneifolia plantations (61.51 t C ha−1 and 63.36 t C ha−1

respectively).
Soil organic C stocks in Cupressus sempervirens and Alnus subcordata

plantations increased by 9.74 t C ha−1 and 1.56 in t C ha−1 respectively
in comparison with the natural forest, and decreased by 8.17 t C ha−1

and 6.32 t C ha−1 in the Acer velutinum andQuercus castaneifolia planta-
tions respectively in 2016.
Fig. 2. Schematic illustration of t
In forest ecosystems, the soil C is determined by the balance be-
tween the litter input and the soil heterotrophic respiration. The change
of soil C in the different land covers was estimated by RothC model. As
shown in Table 3, there was a good agreement among the measured
and modeled data by RothC for the period 1989–2016, as shown by
the low percent deviation.

Results showed that C stock modeled in the Alnus subcordata and
Cupressus sempervirens plantations increased by 2.11 t C ha−1 and
8.71 t C ha−1 respectively compared with the natural forest. Conversely,
a marked SOC decrease was modeled in the Acer velutinum plantation
with 9.14 t C ha−1, and the Quercus castaneifolia plantation with
5.42 t C ha−1. The highest modeled SOC stocks were shown in the Alnus
subcordata (71.79 t C ha−1) and the Cupressus sempervirens plantations
(78.39 t C ha−1), and the lowest in the Acer velutinum and the Quercus
castaneifolia plantations (60.53 t C ha−1 and 64.25 t C ha−1 respectively).

The simulated SOC stocks with the different Global Climate Models
(GCMs) and Representative Concentration Pathways (RCPs) are pre-
sented in Tables 4 and 5. Two graphical examples are given in Figs. 7
and 8 for the CNRM-CM5 model. In our study, the projected decrease
in SOC stocks was 0.44–17.04 t C ha−1 and 0.67–21.83 by 2099 respec-
tively in the RCP 2.6 and RCP 8.5. The highest decrease, equal to
21.83 t C ha−1, was predicted by MIROC-ESM-CHEM (RCP 8.5), and
the lowest decrease by GISS-E2-H (RCP 2.6) with 0.44 t C ha−1.

In the Acer velutinum and Quercus castaneifolia plantations, a sharp
SOC decrease was observed after 2090s compared with the baseline
values in 2016, even with no changes in land management or soil C in-
puts. But the SOC change in the other plantations (Alnus subcordata and
Cupressus sempervirens) was lower in all scenarios. For example in the
Alnus subcordata plantation SOC decreased by 2.83–7.65 t C ha−1; in
the Cupresuss sempervirens plantation by 0.44–6.02 t C ha−1; in the
Acer velutinum plantation by 10.72–14.30 t C ha−1; and in the Quercus
castaneifolia plantation by 6.83–10.81 t C ha−1 in the GISS-E2-Hmodel.

Table 6 shows some results of predicted total SOC stock changes in t
of C for the different land covers considering the surface of the
he experimental approach.



Fig. 3.Box plot of changes in temperaturewith climate change scenario for 9 Global ClimateModels (GCMs) in 2020–2099 comparedwith the base period under RCP 2.6. a) 2020–2039; b)
2040–2059; c) 2060–2079; d) 2080–2099.
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plantations. SOC stock will decrease by 83.2–315.0 t C in Quercus
castaneifolia plantation, by 125.1–327.45 t C inAcer velutinumplantation
and by 16.7–192 t C in natural forest. In the Cupressus sempervirens and
the Alnus subcordata plantations, SOC will increase in MPI-ESM-MR
model (RCP 2.6) and decrease by 21.0–126.42 and 2.68–72.56 t C (re-
spectively in Alnus subcordata and Cupressus sempervirens plantations)
in the other models at the end of simulation period.
Fig. 4.Box plot of changes in precipitationwith climate change scenario for 9 Global ClimateMod
2040–2059; c) 2060–2079; d) 2080–2099.
4. Discussion

4.1. Model validation

The RothCmodel has been validated inmany countries, such as Aus-
tralia, Brazil, Ireland, India, Italy, and France (Cerri et al., 2003;
Francaviglia et al., 2012; Liu et al., 2011; Senapati et al., 2014; Xu et al.,
els (GCMs) in 2020–2099 comparedwith the base period under RCP2.6. a) 2020–2039; b)



Fig. 5.Box plot of changes in temperaturewith climate change scenario for 9 Global ClimateModels (GCMs) in 2020–2099 comparedwith the base period under RCP 8.5. a) 2020–2039; b)
2040–2059; c) 2060–2079; d) 2080–2099.
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2011). Validation results of each plantation based on three different
criteria are shown in Table 7. The R2, RMSE and MAE between all pre-
dicted and measured values of soil organic C were used to assess the
performance of RothC model. RMSE can vary from 0 to a large positive
value, where zero RMSE indicates a perfect model simulation with no
difference between simulated and observed data. RMSE and MAE
show the similarity relationship, so the lower values indicate a best
Fig. 6.Box plot of changes in precipitationwith climate change scenario for 9 Global ClimateMod
2040–2059; c) 2060–2079; d) 2080–2099.
simulation performance. The total simulation error in terms of RMSE
ranged from 1.79 to 4.22. Mean absolute error (MAE) ranged from
1.62 to 2.92. Cupressus sempervirens and Acer velutinum plantations
had the lowest and highest values of RMSE andMAE respectively.More-
over, the higher values of R2 represent the higher similarities among
simulated and measured data. The coefficient of determination (R2)
ranged within 0.63–0.90. The results of statistical parameters analyses
els (GCMs) in 2020–2099 comparedwith the base period under RCP8.5. a) 2020–2039; b)



Table 3
Input data, measured and modeled SOC in 2016 in the different land covers (means ± standard deviation).

Land covera Clay (%) Soil carbon inputs (t C ha−1) IOM (t C ha−1) SOC measured (t C ha−1) SOC modeled (t C ha−1) Deviationb (%)

Acer velutinum 34.4 ± 7.40 2.65 5.34 ± 1.19 61.51 ± 12.93 60.53 −1.58
Alnus subcordata 32.8 ± 16.03 4.18 6.31 ± 1.00 71.24 ± 10.49 71.79 0.78
Quercus castaneifolia 30.0 ± 10.43 3.15 5.52 ± 0.76 63.36 ± 8.42 64.25 1.41
Cupressus sempervirens 40.4 ± 7.26 5.09 7.14 ± 0.84 79.42 ± 8.49 78.39 −1.29
Natural forest 23.0 ± 15.49 3.84c 6.16 ± 0.90 69.68 ± 8.68 69.68 0.0

SOC: soil organic carbon; IOM: inert organic matter.
a n = 7 in each land cover.
b Deviation calculated as [100 × (modeled− measured) / measured].
c Model run to the equilibrium in “inverse mode”.
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indicated a better prediction for Cupressus sempervirens plantation rath-
er than the other plantations since Cupressus sempervirens plantation
had the highest values of R2, and the lowest RMSE and MAE.

4.2. Predictions of SOC under climate change scenarios

It has been predicted that the increasing levels of atmospheric
CO2 and other GHGs will result in increased temperature and altered
rainfall patterns (Gorissen et al., 2004). In climate change studies,
Table 4
Present (A), and simulated (B to E) soil organic carbon stocks in t C ha−1 in the RCP 2.6 scenario
shown in brackets.

Land cover 2016 Time periods CNRM-CM5 EC-EARTH GISS-E2-H GISS-E2-

QC A 63.36 B 20–39 62.37
(−0.05)

61.50
(−0.09)

62.39
(−0.05)

61.53
(−0.09)

C 40–59 58.67
(−0.12)

60.06
(−0.08)

59.32
(−0.10)

60.38
(−0.07)

D 60–79 56.82
(−0.11)

58.23
(−0.08)

57.78
(−0.09)

58.53
(−0.08)

E 80–99 55.29
(−0.10)

58.94
(−0.05)

56.53
(−0.08)

57.31
(−0.07)

E-A −8.07 −4.42 −6.83 −6.05
AV A 61.51 B 20–39 58.19

(−0.14)
57.42
(−0.20)

58.20
(−0.16)

57.45
(−0.20)

C 40–59 54.04
(−0.18)

55.22
(−0.15)

54.61
(−0.17)

55.50
(−0.15)

D 60–79 51.62
(−0.12)

52.88
(−0.14)

52.49
(−0.15)

53.15
(−0.13)

E 80–99 49.69
(−0.11)

52.87
(−0.10)

50.79
(−0.13)

51.48
(−0.12)

E-A −9.52 −8.64 −10.72 −10.03
AS A 71.24 B 20–39 71.08

(−0.01)
70.00
(−0.62)

71.11
(−0.01)

70.04
(−0.06)

C 40–59 68.34
(−0.07)

70.15
(−0.03)

69.16
(−0.05)

70.56
(−0.02)

D 60–79 67.61
(−0.06)

69.34
(−0.03)

68.79
(−0.04)

69.70
(−0.02)

E 80–99 66.89
(−0.05)

71.50
(0.003)

68.41
(−0.03)

69.37
(−0.02)

E-A −4.35 0.26 −2.83 −1.87
CS A 79.42 B 20–39 78.88

(−0.03)
77.62
(−0.09)

78.92
(−0.02)

77.66
(−0.09)

C 40–59 77.00
(−0.06)

79.18
(−0.01)

77.96
(−0.04)

79.67
(0.01)

D 60–79 77.23
(−0.04)

79.24
(−0.003)

78.61
(−0.01)

79.66
(0.004)

E 80–99 77.21
(−0.03)

82.66
(0.04)

78.98
(−0.005)

80.10
(0.01)

E-A −2.21 3.24 −0.44 0.68
NF A 69.68 B 20–39 68.82

(−0.04)
67.81
(−0.09)

68.85
(−0.04)

67.86
(−0.09)

C 40–59 65.79
(−0.10)

67.46
(−0.05)

66.55
(−0.08)

67.85
(−0.04)

D 60–79 64.56
(−0.08)

66.20
(−0.06)

65.68
(−0.07)

66.54
(−0.05)

E 80–99 63.48
(−0.08)

67.80
(−0.02)

64.92
(−0.06)

65.83
(−0.05)

E-A −6.2 −1.88 −4.76 −3.85

QC: Quercus castaneifolia; AV: Acer velutinum; AS: Alnus subcordata; CS: Cupressus sempervirens
various uncertainty sources that can be related to GHG emissions,
climatic drivers, etc. (Van Vuuren et al., 2012), may affect future cli-
mate simulations; and in addition, these uncertainties may affect
SOC dynamics in simulation studies. The results of the present
study revealed that GCMs uncertainties in simulation of SOC for the
case study area are high. Moreover, the results showed relevant dif-
ferences between both future time periods and the land covers.
Therefore, use of just a single GCM model for future climate change
surveys may be misleading.
and the future time periods (2030s, 2050s, 2070s and 2090s). Changes in t C ha−1 yr−1 are

R MIROC-ESM MIROC-ESMCHEM MIR-CGCM3 MPI-ESM-LR MPI-ESM-MR

61.38
(−0.10)

58.35
(−0.25)

61.73
(−0.08)

62.67
(0.03)

61.89
(−0.07)

59.52
(−0.10)

53.40
(−0.24)

59.31
(−0.10)

57.33
(−0.15)

61.37
(−0.05)

56.96
(−0.11)

52.91
(−0.17)

57.31
(−0.10)

57.23
(−0.10)

60.51
(−0.04)

56.20
(−0.09)

49.46
(−0.17)

55.87
(−0.09)

57.08
(−0.08)

59.20
(−0.05)

−7.16 −13.9 −7.49 −6.28 −4.16
57.32
(−0.20)

54.65
(−0.34)

57.62
(−0.19)

58.45
(−0.15)

57.77
(−0.18)

54.76
(−0.16)

49.27
(−0.30)

54.57
(−0.17)

52.88
(−0.21)

56.37
(−0.12)

51.77
(−0.16)

48.01
(−0.22)

52.07
(−0.15)

51.94
(−0.15)

54.89
(−0.11)

50.49
(−0.13)

44.47
(−0.21)

50.20
(−0.14)

51.22
(−0.12)

53.17
(−0.10)

−11.02 −17.04 −11.31 −10.29 −8.34
69.85
(−0.07)

66.11
(−0.25)

70.28
(−0.05)

71.45
(0.01)

70.49
(−0.04)

69.48
(−0.04)

62.05
(−0.23)

69.19
(−0.05)

66.64
(−0.11)

71.77
(0.01)

67.75
(−0.05)

63.10
(−0.13)

68.2
(−0.05)

68.22
(−0.05)

72.15
(0.01)

68.05
(−0.04)

59.82
(−0.14)

67.61
(−0.04)

69.20
(−0.02)

71.67
(0.01)

−3.19 −11.42 −3.63 −2.04 0.43
77.45
(−0.10)

73.078
(−0.31)

77.95
(−0.07)

79.32
(−0.01)

78.19
(−0.06)

78.39
(−0.02)

69.81
(−0.24)

78.04
(−0.03)

74.98
(−0.11)

81.09
(0.04)

77.37
(−0.03)

72.18
(−0.12)

77.93
(−0.02)

78.03
(−0.02)

82.54
(0.05)

78.58
(−0.01)

69.03
(−0.13)

78.04
(−0.02)

79.98
(0.007)

82.76
(0.04)

−0.84 −10.39 −1.38 0.56 3.34
67.68
(−0.1)

64.18
(−0.27)

68.08
(−0.08)

69.17
(−0.02)

68.27
(−0.07)

66.83
(−0.07)

59.78
(−0.25)

66.57
(−0.08)

64.20
(−0.14)

68.99
(−0.02)

64.70
(−0.08)

60.19
(−0.16)

65.13
(−0.07)

65.11
(−0.07)

68.86
(−0.01)

64.56
(−0.06)

56.76
(−0.16)

64.15
(−0.07)

65.63
(−0.05)

68.01
(−0.02)

−5.12 −12.92 −5.53 −4.05 −1.67

; NF: Natural Forest.



Table 5
Present (A), and simulated (B to E) soil organic carbon stocks in t C ha−1 and in the RCP 8.5 scenario and the future time periods (2030s, 2050s, 2070s and 2090s). Changes in t C ha−1 yr−1

are shown in brackets.

Land cover 2016 Time periods CNRM-CM5 EC-EARTH GISS-E2-H GISS-E2-R MIROC-ESM MIROC-ESM-CHEM MIR-CGCM3 MPI-ESM-LR MPI-ESM-MR

QC A 63.26 B 20–39 61.07
(−0.11)

61.82
(−0.08)

61.08
(−0.11)

62.84
(−0.03)

61.03
(−0.11)

58.07
(−0.26)

61.30
(−0.10)

63.93
(−0.03)

58.54
(−0.24)

C 40–59 58.22
(−0.12)

59.32
(−0.10)

57.30
(−0.15)

59.66
(−0.09)

58.58
(−0.11)

52.59
(−0.26)

58.01
(−0.13)

59.61
(−0.093)

54.19
(−0.22)

D 60–79 57.15
(−0.10)

55.46
(−0.13)

54.00
(−0.15)

58.28
(−0.08)

55.10
(−0.13)

48.27
(−0.25)

55.05
(−0.13)

56.42
(−0.11)

54.21
(−0.15)

E 80–99 54.48
(−0.11)

51.60
(−0.15)

52.55
(−0.13)

56.41
(−0.09)

51.51
(−0.14)

47.61
(−0.19)

50.97
(−0.15)

53.26
(−0.13)

51.99
(−0.14)

E-A −8.88 −11.76 −10.81 −6.95 −11.85 −15.75 −12.39 −10.1 −11.37
AV A 61.51 B 20–39 57.04

(−0.22)
57.70
(−0.19)

57.05
(−0.22)

58.59
(−0.14)

57.01
(−0.22)

54.4
(−0.35)

57.24
(−0.21)

59.54
(−0.09)

54.81
(−0.33)

C 40–59 53.60
(−0.19)

54.58
(−0.17)

52.79
(−0.21)

54.91
(−0.16)

53.91
(−0.19)

48.54
(−0.32)

53.42
(−0.20)

54.91
(−0.16)

49.97
(−0.28)

D 60–79 51.87
(−0.16)

50.46
(−0.18)

49.11
(−0.20)

52.92
(−0.14)

50.12
(−0.18)

43.96
(−0.29)

50.05
(−0.19)

51.32
(−0.16)

49.17
(−0.20)

E 80–99 48.97
(−0.15)

46.46
(−0.18)

47.21
(−0.17)

50.69
(−0.13)

46.38
(−0.18)

39.68
(−0.27)

45.89
(−0.19)

47.96
(−0.16)

46.69
(−0.18)

E-A −12.54 −15.05 −14.3 −10.82 −15.13 −21.83 −15.62 −13.55 −14.82
AS A 71.24 B 20–39 69.46

(−0.099)
70.40
(−0.04)

69.48
(−0.09)

71.67
(−0.02)

69.41
(−0.09)

65.77
(−0.27)

69.75
(−0.07)

73.03
(−0.09)

66.34
(−0.24)

C 40–59 67.87
(−0.08)

69.19
(−0.05)

66.72
(−0.11)

69.55
(−0.04)

68.31
(−0.07)

61.06
(−0.25)

67.59
(−0.09)

69.42
(−0.04)

63.02
(−0.20)

D 60–79 68.09
(−0.05)

65.87
(−0.09)

64.15
(−0.12)

69.40
(−0.03)

65.46
(−0.10)

57.29
(−0.23)

65.44
(−0.10)

67.01
(−0.07)

64.69
(−0.11)

E 80–99 65.88
(−0.07)

62.24
(−0.11)

63.59
(−0.09)

68.24
(−0.04)

62.16
(−0.11)

53.18
(−0.22)

61.50
(−0.12)

64.26
(−0.09)

62.97
(−0.10)

E-A −5.36 −9.00 −7.65 −3.00 −9.08 −18.06 −9.74 −6.98 −8.27
CS A 79.42 B 20–39 76.99

(−0.12)
78.08
(−0.07)

77.01
(−0.12)

79.58
(0.01)

76.93
(−0.124)

72.69
(−0.33)

77.32
(−0.10)

81.18
(0.09)

73.35
(−0.30)

C 40–59 76.52
(−0.07)

78.04
(−0.03)

75.15
(−0.11)

78.42
(−0.02)

77.03
(−0.059)

68.66
(−0.26)

76.18
(−0.08)

78.21
(−0.03)

70.93
(−0.21)

D 60–79 77.85
(−0.03)

75.14
(−0.07)

73.20
(−0.10)

79.32
(−0.001)

74.69
(−0.078)

65.33
(−0.23)

74.71
(−0.08)

76.45
(−0.05)

74.03
(−0.09)

E 80–99 76.01
(−0.04)

71.70
(−0.10)

73.40
(−0.07)

78.75
(−0.01)

71.64
(−0.097)

61.28
(−0.22)

70.87
(−0.11)

74.05
(−0.67)

72.73
(−0.08)

E-A −3.41 −7.72 −6.02 −0.67 −7.78 −18.14 −8.55 −5.37 −6.69
NF A 69.68 B 20–39 67.31

(−0.12)
68.19
(−0.07)

67.33
(−0.12)

69.37
(−0.01)

67.27
(−0.12)

63.86
(−0.3)

67.58
(−0.10)

70.64
(−0.05)

64.40
(−0.26)

C 40–59 65.32
(−0.11)

66.58
(−0.08)

64.23
(−0.14)

66.94
(−0.07)

65.73
(−0.10)

58.84
(−0.27)

65.06
(−0.11)

66.84
(−0.07)

60.69
(−0.22)

D 60–79 64.99
(−0.08)

62.94
(−0.11)

61.29
(−0.14)

66.26
(−0.06)

62.54
(−0.12)

54.74
(−0.25)

62.51
(−0.12)

64.03
(−0.09)

61.70
(−0.13)

E 80–99 62.53
(−0.09)

59.12
(−0.13)

60.33
(−0.12)

64.76
(−0.06)

59.04
(−0.13)

50.48
(−0.24)

58.41
(−0.14)

61.04
(−0.11)

59.72
(−0.12)

E-A −7.15 −10.56 −9.35 −4.92 −10.64 −19.2 −11.27 −8.64 −9.96

QC: Quercus castaneifolia; AV: Acer velutinum; AS: Alnus subcordata; CS: Cupressus sempervirens; NF: Natural Forest.
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According to this study, in general, the RCP 8.5 scenario provided a
warmer climate in the future and predicted a more critical condition
compared to the RCP 2.6 scenario. Among the nine GCMs, CNRM-CM5,
Fig. 7. Simulation of soil organic carbon dynamics under CNRM-CM5, a: RCP 2.6, b: RCP 8.5. QC:
NF: Natural Forest.
MIROC-ESM andMIROC-ESM-CHEMmodels showedmore extreme cli-
mate change simulations for temperature than the othermodels in both
emission scenarios. GCMs precipitation predictions showed a broad
Quercus castaneifolia; AV: Acer velutinum; AS: Alnus subcordata; CS: Cupressus sempervirens;



Fig. 8. Soil organic carbon changes in 2090s under the twoemission scenarios (RCP2.6 and
RCP 8.5), CNRM-CM5 model for each land cover. QC: Quercus castaneifolia; AV: Acer
velutinum; AS: Alnus subcordata; CS: Cupressus sempervirens; NF: Natural Forest.

Table 7
RothC validation results for soil organic carbon from the plantations.

Statistical
factor

Quercus
castaneifolia

Acer
velutinum

Alnus
subcordata

Cupressus
sempervirens

R2 0.834 0.862 0.636 0.909
RMSE 2.83 4.22 2.22 1.79
MAE 2.57 2.92 1.98 1.62
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range. Maximum changes in precipitation in the future periods com-
pared to the base period were observed in MIROC-ESM-CHEM (40.89%
and 50.14% respectively in RCP 2.6 and RCP 8.5 emission scenarios),
and MIR-CGCM3 (14.20% and 19.20% respectively in RCP 2.6 and RCP
8.5 emission scenarios) models in both emission scenarios, and
MIROC-ESMmodel, 26.13% in RCP 8.5.

The model results suggest an overall decrease in SOC stocks by 2099
as a consequence of changes in land cover and climate, but in the Alnus
subcordata and Cupressus sempervirens plantations this decrease was
lower. The lower decrease of SOC in Alnus subcordata (1.87–
18.06 t C ha−1) and Cupressus sempervirens (0.44–18.14 t C ha−1) plan-
tations compared to Acer velutinum (8.34–21.83 t C ha−1) and Quercus
castaneifolia (4.16–15.75 t C ha−1) plantations can be related to the dis-
tinct quality of the plant material from different forest types (Lal et al.,
1995).

Cupressus sempervirens plantation has a higher litter deposition on
the soil surface, and a lower decomposability of plant residues due to
changed litter quality (for example, higher C:N ratio) of needle-leaves
in comparison with broad-leaves, so Cupressus sempervirens plantation
shows higher SOC (Kooch et al., 2012).

Also Mao et al. (2010) results show that the presence of N-fixing
species can increase content of SOC in forest plantations, so the high
content of soil organic C in soils of the Alnus subcordata plantation is
due to the presence N-fixing species.

SOCs in the Alnus subcordata and Cupressus sempervirens plantations
were 53.18–71.67 t C ha−1 and 61.28–82.76 t C ha−1 respectively at the
end of simulation (80 yr) compared to 50.48–68.01 t C ha−1 in the nat-
ural forest, i.e. about 5% higher in theAlnus subcordata and 12% higher in
the Cupressus sempervirens plantations.

Acer velutinum plantation had the lowest SOC among the other land
covers. C stockswere 39.68–53.17 t C ha−1 after 80 years, and about 78%
lower in comparison with the natural forest. We can conclude that Acer
velutinum plantation, with a C decrease in the range 8.34–
21.83 t C ha−1, was more sensitive to climate change compared to the
baseline value of 2016.
Table 6
Predicted total soil organic carbon stock changes in t of C for the different land covers.

Land cover Area (ha) RCP 2.6

MPI-ESM-MR MIROC-ESM

QC 20 −83.2 (−4.16 × 20) −278.0 (−
AV 15 −125.1 (−8.34 × 15) −255.6 (−
AS 7 3.01 (0.43 × 7) −79.94 (−
CS 4 13.36 (3.34 × 4) −41.56 (−
NF 10 −16.7 (−1.67 × 10) −129.2 (−

QC: Quercus castaneifolia; AV: Acer velutinum; AS: Alnus subcordata; CS: Cupressus sempervirens
The natural forest, Cupressus sempervirens and Alnus subcordata
plantationswere not highly sensitive to climate change, and the natural
forest had a low decrease compared to the 2016 baseline during the
80 years simulation (1.67–19.2 t C ha−1). After “80 yr” C stocks were
in the range 50.48–68.01 t C ha−1.

SomeGCMmodelsmarked a different trend in Cupressus sempervirens
plantation and Alnus subcordata plantation (RCP 2.6). In both scenarios,
the SOC had an annual decrease in all GCMs, except EC-EARTH and MPI-
ESM-MR models in Alnus subcordata plantation, and EC-EARTH, MPI-
ESM-MR, GISS-E2-R and MPI-ESM-LR models in Cupressus sempervirens
plantation only in RCP 2.6. A minor increase (0.34 t C ha−1 on average)
was predicted in Alnus subcordata plantation, while this increase in
Cupressus sempervirens plantation was 1.95 t C ha−1.

A lower decreasewas observed in the RCP 2.6 scenario.MIROC-ESM-
CHEM showed the highest decrease after 80 years in all the land covers
and scenarios, and the lower decreases were observed in theMPI-ESM-
MR and GISS-E2-R respectively in the RCP 2.6 and RCP 8.5 scenario.

Considering the surface of plantations, Cupressus sempervirens plan-
tation showed the lowest decrease and Acer velutinum plantation the
highest decrease at the end of simulations.

Some studies have shown increased SOC decomposition at warmer
temperatures (Dalias et al., 2001; Holland et al., 2000), but in these con-
ditions decomposition can also be slowed by decreased soil moisture
(Gottschalk et al., 2012). Rampazzo Todorovic et al. (2014) concluded
that the future scenarios for the forest sites show a slightly higher in-
crease of SOC accumulation compared to past and present stocks, prob-
ably due to a combination of higher temperatures, lower precipitation,
and drier soil conditions. On the other hand Köchy et al. (2015) stated
that both the increase in global temperatures and the decrease of pre-
cipitations, may result in an overall decrease in the SOC stock.

Results of Francaviglia et al. (2012) showed thatwith increased tem-
perature and decreased precipitation SOC accumulationwas very differ-
ent in the future climate change projections. In particular, in the land
uses with high soil C inputs SOC increased, and in the land uses with
low soil C inputs SOC decreased in the future.

Acer velutinum plantation had the highest losses of soil organic C
from 0.1 to 0.27 t C ha−1 yr−1 in comparisonwith the other land covers.
Cupressus sempervirens plantation had the lowest losses of SOC from
0.005 to 0.22 t C ha−1 yr−1, and in some of GCMs in RCP 2.6, result
showed that Cupressus sempervirens can maintain or even increase
SOC by 0.56 to 3.34 t C ha−1 yr−1 from the initial value.

Results in this research shows that the land cover effect is more rel-
evant than climate change. Our results are similarwith other simulation
studies clearly denoting that land use/cover can affect soil organic C
content more strongly than climate change in Italy and Europe (Farina
RCP 8.5

-CHEM GISS-E2-R MIROC-ESM-CHEM

13.9 × 20) −139 (−6.95 × 20) −315 (−15.75 × 20)
17.04 × 15) −162.3 (−10.82 × 15) −327.45 (−21.83 × 15)
11.42 × 7) −21 (−3.00 × 7) −126.42 (−18.06 × 7)
10.39 × 4) −2.68 (−0.67 × 4) −72.56 (−18.14 × 4)
12.92 × 10) −49.2 (−4.92 × 10) −192.0 (−19.2 × 10)

; NF: Natural Forest.
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et al., 2011; Francaviglia et al., 2012; Yigini and Panagos, 2016). Farina et
al. (2011) indicated that the effect of management practices on the C
balance could prevail on climate change. Francaviglia et al. (2012) stat-
ed that the changes in land use affected significantly SOC stocks, with a
lower effect to be ascribed to climate change scenarios. According to
Yigini and Panagos (2016) differences in SOC stocks were higher
among land covers than among climate change scenarios.

To determine SOC content and stocks, some studies have focused on
both topsoil and subsoil (Jobbágy and Jackson, 2000; Parras-Alcántara et
al., 2015);whenpredicting the impacts of future climate change scenarios
on soil organic C in the long term, Lozano-García et al. (2017) andMuñoz-
Rojas et al. (2015) stated that climatic factors and soil use and manage-
ment mainly affect SOC in the surface layers compared with the depth.

In summary, results showed a SOC decrease in the topsoil under fu-
ture climate scenarios and with the conversion from natural forest to
the other land covers, which are remarkable in the 2099 time period.
Our results are in agreement with Jones et al. (2005), Lozano-García et
al. (2017) and Muñoz-Rojas et al. (2015, 2017). However, the amount
of this decrease varies according to species and forests types.

Early prediction of SOC changes is crucial to reach a sustainableman-
agement in order to reduce SOC loss. RothC model suggested that soils
under Cupressus sempervirens and Alnus subcordata plantations could
accumulate more soil organic C than Acer velutinum and Quercus
castaneifolia plantations (with low SOC contents), be more effective
for mitigation of future climate change in Hyrcanian forests, and repre-
sent a key economic driver for land cover restoration in degraded Hyr-
canian forests.

5. Conclusions

With the simulation results of the RothCmodel, we can achieve useful
information in relation to land cover and future climate changes. Our re-
sults indicated the RothC model can adequately predict the SOC stocks at
Hyrcanian forests. The conversion of a prior natural forest to Cupressus
sempervirens andAlnus subcordataplantations resulted in a sharp increase
in the SOC stock, but with a lower effect to be attributed to future climate
change. The IPCC climate change scenarios considerably affect the soil C
stocks in the different land cover in Hyrcanian forest ecosystem. The
RothC simulation showed that the SOC stocks decreased considerably
with increasing temperatures. The extent of this decrease varies in RCP
2.6, RCP 8.5 and among GCM models, but the response of soil organic C
to future climate change was relatively less evident than land cover
change. Our results point out that the use of a simulation approach is rea-
sonable and cost-effective in comparison with long-term monitoring re-
quiring expensive measurements. Simulation models combined with
SOC inventory data can be considered as the most advanced tools of
reporting and management planning. In addition, many other factors af-
fecting SOC content in future climate change scenarios, including age of
plantations, different soil depths, and land use scenarios can be evaluated
with simulation approaches to improve management decisions.
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